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REPEATED MEASUREMENTS DESIGNS, III
BALANCED CONNECTED DESIGNS

By

C. Magda and A. Hedayat

Department of Mathematics
University of Illinois, Chicago

ABSTRACT

Repeated measurements designs (RM designs) are experiments

in which an experimental unit is exposed to a sequence of

treatments during a number of periods (days). A measurement

taken on a unit depends on the treatment administered in the

previous period (residual effect ) ,  the treatment given during

the present period (direct effect), the unit itself (unit

effect) and the present period (period effect).

In the first part of the paper, after defining the con-

cept of balanced and connected RM design, we proceed in cons-

tructing large families of balanced and connected RM designs

when the number of periods is less than the number of treat-

ments. In the last section we discuss the structure and the

ranks of the C-matrices for direct and residual effects which

arise from these designs , as well as the form of the best

linear unbiased estimators of estimable contrasts of residual

and direct effects.

_ 
~~~~~~~~~~~~~~~~~~~~ • • • • • • •~~~~~~~~~~~~~~~~ • • •• 



_ _ _ _ _ _ _ _  -

1.

REPEATED MEASUREMENTS DESIGNS, III
BALANCED CONNECTED DESIGNS

By

C. Magda and A. Hedayat
Department of Mathematics

University of Illinois, Chicago

1. Introduction

A statistical design in which experimental units are used

repeatedly by exposing them to a sequence of’ treatments is

called a repeated measurements design (RM design). In a RM

design we administer t treatments during p periods to n

experimental units. The parameters t and p are usually

known to the experimenter. RM designs have been considered

in the literature under a variety of’ names such as crossover

or changeover designs, time series designs or before-after

designs. In these designs, apart from the direct treatment

effects , res idual or “carry-over ” effects are usually assumed .

It has been shown by A.  Hedayat and K. Afearinej ad (1978),

that if certain balance for the residual and direct effects

is assumed, these designs become optimal in a large class of

designs. The cyclic RM designs that we shall construct

(precise definitions will follow), apart from having these

balancing properties, are also connected , i.e., all contrasts

of residual and direct effects are estimable . Their cyclic struc-

ture makes them easy to implement in practice. We also give

the best linear unbiased estimators (b.l.u.e.’s) for some of -

_ 
- - -~~~~~~~ - -  -~~~~~~~~~~~ —.---—-~~~~~~~~~~~~~~~~~~~~ .~~ —-~~~~~~~~~~~~~~~ - - -_ -~~~-~~~~~~



2.

the contrasts. Tables of such designs for small values of

t and p can be found at the end of the paper. The authors

hope that they would suffice for most practical applications.

2. Defini~j.ons and )todel

Let us present the set-up in which we will be working.

Suppose d i~ a two dimensional array . If a is in position

d(i-l,j) in d and b is in position d(i,j) in d we

say that a precedes b (in the order of application).

We say that a follows b if’ b precedes a.

Definition ~ J.. A balanced RM(t,p,n,X1,)2) design is a

pxn array d whose entries involve t treatments (labeled

o,i,...,t 1), satisfying the following conditions:

(a) the treatments along any column are distinct.

(b) A treatment occurs exactly X1 times in each

row of d.

(c) In the order of’ application, each treatment is

preceded in ci by each other treatment exactly

times.

Part (a) in the above definition has been included mostly

becaus e of esthetic statistical reasons , such as treating a

column in the array as a fixed size block, etc... We refer

to the treatment in the (i,j)th entry of the design d

by d(i,J). The basic divisibility conditions for the existence

of a balanced RM(t,p,n,~1,~2) design are the following: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ _ _ _ _ _
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3.

n ).~ t and ~1(p-l) = ~2(t—i).

Definition 
~~~~~~~~ A shift starting at i of (o,l,2,...,t— 1)

is (i ,i+i, ..., t— i ,o, i ,..., i— i ) .

Definition 2.3. We say that two shifts of (o,1,2,...,t-l)

are distinct if they start with different symbols.

Definition 2.11W . A balanced RM(t,p,n,)41,).2) design is called

cyclic if it can be decomposed into ).,~ subarrays of size

pxt and the rows of each pxt subarray are shifts of

(0,1,2,.. .,t— l).

Throughout the paper the underlying model will be:

l.a + + + T d(i , j) + ~d(i—l,j) 
+ ejj; 1 ~ i �~ ~~, 

1 �~ J �. 
fl

where ejj are assumed to have mean zero and covariance matrix

c~~I. The overall effect is ~ c~ is the effect of the ~th

period, is the effect of the ~th experimental unit,

is the direct effect of treatment d(i,j) and

is the residual effec t of treatment d ( K ,~. ) .  During

the first period (i.e., for i=i), no residual effects are

assumed, so 
~d (O,j) 

are zero for all i.

-- -—--

~

---

~ 
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3. Construction of Balanced hLl Desi~gns

with minimal number of units

In this section we construct families of cyclic balanced

RM designs. The main result is contained in Theorem 3.1.

We begin with a couple of useful propositions. AS we shall

see in the proposition that follows, the advantage of con-

structing balanced, P.M designs by shifts is that condition

(c) of Definition 2.1 needs to be satisfied for one treatment

only. Let the treatments be (O,l,2,...,t-lJ .

Proposition 3.1. A pxn array d, with )
~~ 

subarrays of

size pxt each, ~~ ~~t. 
cyclic balanced RM(t,p,n,~ 11X2) de-

sign if all the rows in each pxt subarray are distinct

shifts of (0,l,2,...,t—l) and, in d, the treatment 0 is

followed in order of application by every other treatment

exactly ).~ times.

Proof: Since the shifts in each pxt subarray are assumed

distinct, (a) is satisfied . Clearly (b) holds. To prove (c),

fix treatment j. By assumption, 0 precedes j exactly 
~2

times . So let i be different of 0 and j .  The treatment

J-i (mod t) is nonzero and hence, preceded by 0 times

in d. There are therefore exactly ~~ rows of length t

in various pxt subarrays in which j-i (mod t) is preceded

by 0. In all these rows, j is preceded by i, because each

such row is assumed to be a shift of (O ,l,2,...,t-l). There-
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fore j is preceded by I exactly 
~2 

times .

The following proposition reduces the construction of a

cyclic balanced RM design to a partition problem and is our

tool for constructing these designs.

Proposition 3.2. Let ~1(p-l) = (t—i) (i.e., 
~2 

= i) .

A cyclic balanced RM(t,p,n,~ 111) design d exists if’ and

“1
only if (l,2,3,...,t—lJ = U P~ kdisjoint ), IP~.I = p—i____ — 

i=l

such that for some ordering of the elements in P~, the

successive partial sums of these elements are all distinct

and nonzero ~~iodu1o t), for a].]. i, 1 ~ ~

Proof: For simplicity of notation, in the proof that follows

we will not use the d(i,J) notation introduced earlier.

Note that the condition on the successive partial sums in P~
to be distinct and nonzero (mod t) can be expressed equiva-

Ic
lently, by subtracting two partial sums, as E s~~ + 0 (mod t)

for all 1 
~ 
j ( Ic < p-l, where P~ = ((Sjj)J.

Suppose we have a cyclic balanced RM(t,p,n,)1,1) design

d. Let f~~ map the entries of the ~th row into the corres-

ponding entries of the (j~1)th row, in the ~th pxt subarray

of d. Because ci is a cyclic design, ~~ has the following

~~-
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property : f1~(x) = f~~(0) + x. Let 
~~ 

= f1~(O). Define

= 
~~~ij~~l<i< (p—l) 

=

xl
U P~ = (l,2,3,...,t-lJ holds because 0 is preceded in d
i= 1

by everything else exactly once. On the other hand, in the

ith pxt subarray of d, the entries along any column are

distinct, so in particular,

are

distinct. But fjj(f1(J_1)( . .  . ( f~~1
( 0 )) . . . ) )  = .

k
so ~ s~~ ~ 

0 (mod t) follows (by subtracting two such

partial sums), for all 1 ( j ( k ( (p-l).

Conversely, assume P1 =

Construct the cyclic balanced RM(t,p,n,)1,l) design d as

follows : In the ~th pxt subarray let the zeros be followed

by the Sjj ’S in the same order as they appear in P~. Then

complete the subarray by shifts. Down a column (without loss

the first column) we have 0, S lI S
l+S 2 I s • s ~~

S
1
+S

2+~~
a
~~

+S ( p_ 1 )

which are all distinct by assumption. Since we complete the

subarray by shifts, the entries along any column of the sub-

array will also be distinct. With the help of Proposition 3.1,

we conclude the proof.
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~emark. An ana1c’~ous result to Proposition 3.? has been estab-

lished in which the restriction = 1 is not imposed . The

authors chose to include the present version because of its

direct impact on the results that follow and because of its

simplicity.

We introduce two examples to illustrate how a partition,

as described in Proposition 3.2, can be associated with a

cyclic balanced RN design.

Example 1. Let t=9, p=3, n=36, x 1= 1t and x2=i. Consider

P1 = ((l,7)j, P2 = ((2,6)J , P3 = ((3,5)J and p
4 = ((4,8)j.

These Pt’s satisfy the requirements of the previous proposi-

tion. The associated cyclic balanced RM(9 3,36,k,l) design is:

(0 1 2 3 4 5 6 7 8  (0 1 2 3 4 5 6 7 8
2 3 4 5 6 7 8~~o 3 4 5 6 7 8~~o 1

8 o l 2 3 4 5 6 ~~7 8 o l 2 3 k 5 ~~6 7

(0 1 2 3 4 5 6 7 8  p0 1 2 3 4 5 6 7 8
4 5 6 7 8 (0 1 2 5 6 7 8~~o 1 2 3

• 8 o 1 2 3 1 t ~~5 6 7  3 4 5 6 7 \ 8 0 l 2 .

Example 2. For t = 9, p = 5, 
~~~ 

= 9 , let P1 = ((l,7,3,5)j

and P2 = ((8,2,6,k)j. This partition corresponds to the

design: 
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1 2 3 4 5 6 7 8 (0 1 2 3 4 5 6 7 8

2 3 4 5 6 7 8(0 ~8 (O 1 2 3 4 5 6 7
8(0 1 2  3 4 5  6~~~7 1~~~2 3 4 5  6 7 8~~o
2~~ 3 4 5  6 7 8 (0 1 7 8~~o 1 2  3 11. ~~~
7 8 o l 2 3 l t ’~5 6  2 3~~I t 5 6 7 8 o l .

Note, however, that the partition P1 = ((1,7,3,4); and

p
2 = ((2,6,4,8); does not generate a cyclic balanced RM

design in the same fashion. This happens because, in

6 + It + 8 = 0 (mod 9).

In the next theorem we give a constructive proof of the

existence of cyclic balanced RM(t,p,n,x1,l) designs for all

sets of parameters satisfying p < t and the basic divisibility

conditions. It will be shown later that all these designs are

connected (i.e., all linear contrasts of’ direët and residual

effects are estimable).

Theorem 3.].. The necessary and sufficient conditions ~~~

existence of a cyclic balanced RM(t,p,n,X1,l) design with

p < t are n = X~t and x1(p-l) = (t—i).

Proof: (by construction).

We first give the partitions that we use to construct

the designs, for all cases. 

~~~~~• - -  - - - - -~~~~~~~~~ -_-.---~~_ - - - ~~-- _~--— - --~~~~~~~~~~~~~~~ - - - ~~~~~_ -—~ --- - _-
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case 1. (p even). Consider the following partition of

(1,2 ,3, ...,t— lj:

= ((1,(t-l).~i, i+~lS 
(t-l)-(i+x 1), i+2x1, (t-l)-(i÷2~1),...

i+jxl, (t—l)— (i+jx 1),...,i + 
(1~ 2) X])J for

~~<~~~< 
(Pr

), l < i < X 1, and for

= ((x1, (t—i)—x 1, 2~l, 
(t—l)—2x 1, 3k].. (t— l)-3X1,...

...,jx~ , (t—l)—jx 1,...,(t—l))j where 1 ~ < 
(p-.2)

case 2.].. (p odd and ). 2). Define the partition as

follows:

= ((i,(t-l)—i, i+x~ , (t—i)—(i+x 1), i+2x 1, ( t — l ) — ( i + 2 x 1) , . . .

. ..,  i+j~1, (t—])—(i+Jx 1),...,i + ~~~~~~ (t—l)— (i +

for o < j < ~~~~~ , i < i < x 1 and for

= ((x 1, (t—i)—x 1, 2x~ , (t—l)—2x 1, 3X 1, (t—l)-~~1,...

...,jx1, (t—i)—jx 1,...,~~.~
’
~x1, (t—1))j for 1 < ~ < 

(p—i),

case 2.2. (p odd and = 2).

Let P1 = ((1,(t-1)-1, 3, (t-1)-3, 5, (t-l)-5,...

..., i+2j, (t~i)~~(l+2j),...,l + 2,~~~~~ (t-1)-(1 +

for O < j < ~~~~~, and

~
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P2 = ( ( t— i ) , 2 , (t —i ) — 2 , 4, (t— l ) -k , ~~, (t-i )— 6 ,...
2j, (t—l—2j,...,(p—l))j for i < j < (P;

3)

and (p-i) (t-i)

The proof consists in showing that the conditions stated in

Proposition 3.2 are satisfied for all the partitions above.

In all these cases It is straightforward to check that

A 1
U P~ (].,2,3,...,t-].j (disjoint) and that 1P11 = p-i
i=1

for ali i < i < A 1.
k

To check the condition ~ s~~ + 0 (mod t) for all
4=j

1 < j < k < (p-i), where P~ = ~~~~~~~~~~~ < ,~ < (p-i) 
is the

defined above, we note that any two (suitable) neighbor-

ing entries in P~ always sum up to t-l, for all 1 ( i (

Th~.e fact enables us to show that an arbitrary sum E s ,14
as above, is never a multiple of’ t. A detailed verification

for all cases is given in the Appendix.

In practice, the number of treatments, t , and (possibly )

the number of periods, p, are known to the experimenter. It

is usually of interest to construct a balanced RM design d,

with known t and p, in which the number of units, n, is

minimal, This can be achieved (as the divisibil.i~ y conditions

show), if end only if A 3 and A 2 are relatively prime. The

designs in Theorem 3.1 have minimal n since A 2 = 1.

L _ _  
_
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It is easy to extend the validity of the previous theorem

in the following sense:

Corollary ~
j. ~~~~~~~~ . nacessary~ ~~~ sufficie~~ conditions £.~~~ ~~~

existence of a cyclic balanced RN(t,p,n,A 1,A 2) design with

p ( t and are n = A~t and )~1(p—l) = x2(t—l).

Proof: Let = mA 2. Construct, as in the previous theorem,

a cyclic RJ4(t,p,n,m,l) design. Take x2 copies of this

design to obtain a cyclic balanced RM(t,p,n,A 1,X2) design,

as desired .

Even though shifts prov e successful in constructing bal-

anced RN designs with p < t , this is not the cas e for

p = t .  Note that for odd t, cyclic balanced RM(t,t,t,1,l)

designs do not exist. This is so becaus e in this case we

only have the trivial partition P]. = (l ,2,3,...,t — l J .  Clearly ,

t—l 1
~

~ 
= 2 = 0 (mod t), no matter how we order the elements

in P1
. Nonexistence is now assured by Proposition 3.2.

The construction of balanced RM(t,p,n,A 1,A 2) designs

for A 2 A 1 is researched presently. Some results have

been obtained and they will be presented in a subsequent paper. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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It. Estirnability and Estimation.

A statistical design is of practical use if at least the

differences between various parameters of’ interest can be unbiasedly

estimated from the observations. In this section we shall be

mainly concerned with the concept of’ estimability, so we recall

the usual definitions .

Let ~ be the vector of parameters and Y be the vector

of observations . Suppose we assume m effects in our linear

model. Then we can write :

=

where is the vector of parameters associated with the

~th effect.

Definition 14~].~ The differenc e between two parameters is

called an elementary contrast. A linear combination of para-

meters E c,1r~ is called a (linear) contrast if T = 0.

i j

Definition 4.2. A linear function of parameters

is estimable if it is equal to the expected value of some

linear function of the observations; i.e., 4’y is estimable

if e’v = E(t’Y) for some vector t of constants.

Definition 4 .3. A design is connected for the ith effect

if all the linear contrasts of parameters of the ~th effect are

estimable. A design is called connected if it is connected
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for all the assumed effects.

We should mention that the subspace of linear contrasts

of t parameters is of dimension t-l arid is spanned by the

elementary contrasts.

The following lemma will be helpful in proving the next

proposition.

Lemma 4.1. Let S = [aO~
ar, al~

ar+l~ 
a2~

ar÷2I...~
at...l

_a
r÷(t_ l)J~

where a1 are constants, and let (r,t) = 1. Then aj~aj

(i + j) can be expressed as a sum of elementa of S. (All

the indexing is modulo t).

Proof: Since (r,t) = 1, the Z-module generated by r in

z.~ equals Z.~ so we can write S = (a0~ar , ar~a2r~ a2r~a3r ,.

a (t_ 1)r~atr J .  If i = kr and j  = mr, then ai - aj  =

= (akr_a(k+l)r) + (a(k÷l)r
_a
(k+2)) ( a (m_ 1)r~~mrL~

In order to show that the designs constructed in the pre-

vious section are connected, we introduce the following:

Proposition 4.1. Assume p < t. A cyclic balanced

RM(t,p,n ,A 1,X2) design d is connected for direct and resi—

dual effects if there exist two pxt subarrays of d such

that the zeros in the first period of these subarrays are

followed by a and b respectively, and (b-a ,t) = 1.
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Proof: The necessary conditions n = A 1t, A1(p-l) = ~2(t—i)
together with p < t imply ~1 > > 1. The design d has,

therefore, at least two pxt subarrays. Suppose they are as

follows:

(0 1 2 ...... (t—l) (0 1 2 ...... ( t — i )

~‘a a+l a+2 ... a+(t—l) ~“b b+1 b+2 ... b+ (t—l) (*)
... . SI...... ~~~~ .. ~~~1 ~ • ~~~~~~~ S e . • ~ ~~~• S  ~.. • I S S • • I

where a and b satisfy (b-a,t) = 1. Consider the entries

(i,j), (2,j), (i,t+j), (2,t+j) in (*). We have

E(Y1~) = M + a] + + ~~~~~~ E(Yl,t+j) = U + a1 + +

E(Y2~) = U + ~~ + 
~
j + Ta+j-l + and E(Y2,t+j) =

= U + a2 + + Tb+j..1 + Pj...3
. SO

E[~ (Y1~~Y2~ + 
~2,t+j~~l,t+j~] 

= 

~~~j -l - ~a+j-1’ 
for 1 

~ J ~ 
t .

The computations in the indices of parameters are mod t. We

have estimated t elementary contrasts for the direct effects .

The previous lemma assures us that all the elementary contrasts

for the direct effects are estimable. Let be a linear

combination of the measurements such that ECTrS) = Tr -

Now consider the entries : (i,j), (2,j), (1,t+a—b+j),

(2,t+a-b+J) in (*). We have the following expectations :

E(Y1~) = ~.t + a1 + + Tj~i~ E(Y1,t+a_b+j)

U + a1 + 
~t+a-b+j 

+ Ta-b+j-l’ E(Y2~) = U + cz.~ + +

+ Ta+j~1 + and E(Y 2 ,t+a_b+j ) U + + 
~t+a-b+j  +



+ 1a+j -l + 
~a-b+j-1 

Then

E[(Y1j
_Y

2J+Y2,t+a_b+j~Yl,t+a_b+j
) + 

~a-b+j-1,j-l~ 
=

= 

~a-b+j-l~~j-l 
This holds for 1 

~ 
j < t. Again, Lemma

11.1 implies that there exists a linear combination of

measurements, such that E(R
~~
) = 

~u -

When constructing cyclic balanced RM designs it is

advisable, for purposes of’ estimation, that the shifts satisfy

the condition (b-a,t) = 1, as required in the above propos i-

tion.

Corollary 4.1. The designs constructed in Theorem 3.]. are

connected for direct and residual effects.

Proof: In these designs (with the exception of A 1 = 2 and

p odd), the zeros in the first period of’ the first two pxt

subarrays are followed in the order of application by 1 and

2 respectively. Proposition 4.1 assures, therefore , connected-

ness (for direct and residual effects). In the case of A 1 = 2

and p odd, the difference between the same two entries is

(t— 2). But (t—2 ,t) = 1, since in this case t is odd . So

Proposition 4.1 can be successfully applied to this case as

well. Connectedness for the residual and direct effects is

therefore established.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The previous proposition assures connectedness for direct

and residual effects. This means that the ranks of the C-

matrices for these effects is at least t—l. One of the

results that follow will give us a little more insight

into what these ranks can be.

Let d be a cyclic balanced RN(t,p,n,X 1,X2) design

with design matrix X. The results we will establish in

the remainder of this section hold even when the design d

does not satisfy part (a) of Definition 2.1. The restriction

p < t present in the previous section won’t be assumed here.

The X ’X matrix of the design d is:

T P a‘. 
~~l’txt 

A 2Jt~t~~2
It~t 

A iJt~~ 
Ph P12 ... ~lA 1 

PX ilt~i

p (p- l)x 1; ~ ‘~i~~ p ~2l P22 ~2A 1 
(p—l )A ilt~ 1

X ’X = a tA ilpxp ‘~pxn tA il~~ i

pInxn ~
1nxl

U 
~~lx1

where I is the identity matrix , J is the matrix with all the

entries equal to 1, J* is the matrix with first column entries

all zero and the rest of the entries 1. The symbol 1&~1 
stays

for the column vector of length a with all the entries 1. The



_ _ _ _ _ _ _  _________________ —___

3.7 .

incidence matrix between ‘r and ~ is B1 [p11 p12 ... pa].
Similarly, the incidence matrix between p and ~ is

B2 = [p21 ~22 
The matrix P1~ (respectively P2~)

is a txt incidence matrix between ¶ (respectively p) and

the units in the ~th subarray of the design d. Since each

subarray consists of shifts of (0,l,2,...,t-l) it will be

enough to find the first row of P1~~, the other rows being

cyclic rotat ions of the f i rs t .  There are exac t ly p rows

in each subarray so the sum of the entries in any row of

will be p (all 1 
~ 
j < x1). Similarly, the sum in any row

of P2~ will be p— l (all 1 < j  < x1). If we let P be

the following tx t  matrix:

10 ,
S
.

I •0
I 10
L 10

t-1
then P11 = Z a 4 P~ where p0 

= pt = I and a4 t s are non-
U j=o -‘ 4.

t—1
negative integers satisfying E aj  = P. Similarly

1=0
t-1

P2 1 = Z b1P where b1 are nonnegative inetgers and
‘~ i=O

t—1
~ b1 = p-i. If the design d satisfies condition (a) of
i=0

Definition 2.]., which is the case with a].]. the designs const ructed

in Section 3, the integers aj’s and bk ’s will all be 3.

We are now ready to introduce a couple of’ useful lemmas.

- -- - -_ _ - ----- -—~~~~~~~~~~~ ~~--- -_- -~~_ -~~~~~~- - ~~ — • - - — — —~~~~~~~~~~~~
-•- -—~~~~~~~~~ 
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1

Lemma 4.2. The kOint C-matrix for direct and residual

effects  is:
A A

pA 1I - ~~ r P lJ P~LJ A 2J-A 21 — •~~Z P 1j P~j

=

~2J-A 2I 
- ~~ Z

1
P2J~~ i A 1(P-l)1 -

Proof: Partition the X ’X matrix as follow s

X~X2 
PA iItxt A 2Jtxt 

-

x’x = , where X~X1 =

L~
x1 x~x2 

(p-l)A iIt~t

P11 P12 ... 
~lA 1 

PA 1lt~ i

x~X2 = 
and

p
21 P22 ...

‘~~pxp ~pxn fll~~ i

X
2

X
2 

= 
~~nxfl ~

1
nxi . The matrix C(T,p) is

pn

obtained as: C ( T , p )  = x~X1 
- x~x2(x~x2Y x~x1 where 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~- -~~~~~~~—-~~~~ -.
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+ -

(x~x2Y =

1 1- 
~~‘~nxp ~~

1nxn 0flxl

°lxp °lxn 0l~ l

It is a well-known fact that the Moore-Penrose inverse

of a symmetric matrix is symmetric, commutes with the matrix

and has the same kernel as the matrix . The following lemma

gives a way of’ finding the Moore-Penrose inverse of a poly-

nomial matrix in the txt matrix P introduced earlier.

Let X be an indeterminate and f(X) a (real or complex)

polynomial of degree at most (t-i) in P.

t-l
Lemma 4.3. The Moore-Penrose inverse of f(P) = Z a , P
_ _ _  

— — _ _ _ _ _ _ _  _ _ _ _  
—

is f’(P) = t biP , where bi = c0+c1w +c2w + ...+c t l w

W iS a primit ive tth root of unity and ci equals

if f(w 1) 4 0 and 0 otherwise.

Proof: The txt permutation matrix P satisf’ies P~ I

and has in fact - 1 as minimal polynomial. Let’s in-

troduce the following useful txt matrix:

_
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1 1 . . . 1 . . . 1

1 w ... w~ ...

S = — 1 w~ ... wij ~
i(t-1)

1 ... ~
(t-1)i 

~
(t-1)(t_i)

where w Is a primitive tth root or unity . The matrix

S is unitary and it is easy to show that S~~ PS = D, where

1
w

D=  .

...
w
t_1

Hence S~~f(P)S = r(s~~Ps) = f(D), where

j



--- :::
~~~~~

‘
~ 

- 
~~~~~~~~

— _ —

2]..

The Moore-Penrose inverse of f (D )  is

CO
Cl
.

f(DY 
‘Ci

- 

ct..1]

where c1 equals r(w~Y
’ if f(wi) 4 0 and 0 other-

wise. Set f(PY = sf(DY S~~. It is not difficult to

check that f’(PY defined above is the Moore-Penrose in-

verse of’ f(P). The (j,j)th entry in r(p)~ is

= — E c~w ~i 
‘~~. f(PY is a polynomial in P, because

,J t~ ç Ø

teij = E ckw ~kj = Z CkW ~
kj
~
k 
~
k 

= z ckw w
~~ =

= te~~, 1 (the indices in e1 are computed modulo t).
J ~.,J-f. J

‘the coefficients b can be now defined as

= ~(cø+ciw
i+...+ct iw

(t1
~~) and hence f~~’~~ = 

~~~~ 

bjP~.

The theorem that follows reveals some properties of the

C-matrices for direct and residual effects obtained from

cyclic balanced RI.! designs. For a positive integer d,

let ~(d) denote the number of positive integers less than

d and relatively prime to it.

-~~~~~~ —-- -- - - - - -— —_—__-.—_ -•_
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Theorem 4.1. In a cyclic balanced RM(t ,p, n ,A 1,~ 2 ) design

~~~ C—matr ices for direct and residual effects are symmetric

polynomials in P. Their ranks eaual (t-i) - 
~~ ~~~(d~~~) ~~gri

some ( not necessarily same) distinct divisors di of t .
In these designs contrasts and only contrasts of direct and
residual effects ~~~ be estimable.

Proof: From C(T,p) in Lemma 4.2, we obtain at once the
two C—matrices :

A
1

c(,) = pA 1I - — -

A 1
— (A

2
3 - - 

X 1(p-i) 

(X:J 

:3. 

- 

J=l 
P2~ P~~ )

where f(P) = A 1(p-l)I - t.p ~ - 

~ j l  ~~~~~~ 
and

A

c(p) = X1(p-1)I-- 
A i(P;1)~ 

- P2jP~j -

A
1

- (A
2
J - A 21 - 

~ j=l 
P
2jP5j ) g(P)~ (~2J - “2’ — 

~~ ~~~~~ 

P1~ P~~ )

~‘1where g(P)  = p~1i - 
~~ ~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ -
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Both f and g are symmetric polynomials in P with

rational coefficients . In virtue of Lemma 4.3, we can set

c(~) = 11(P) and C(p)  = k(P), where h(P) and k(P) are

themselves symmetric polynomials in P with rational coeffi-

cients. The dimension of’ the kernel of 11(P) ( respectively

k(P)) is equal to the number of tth roots of unity which

are also roots of 11(X) (respectively k(X)). Suppose

a d th root of unity for some divisor d of t, is

also a root of 11. Then a].]. the primitive dth roots of

unity are also roots of’ 11 as images of w~ under the

Gab le group of automorphisine of’ Q(w1) over Q, the field

of rational numbers. There are ~(d) primitive dth roots

of unity, the roots of the cyclotomic polynomial of

over Q. We now show that 1 is always a root of 11. AB

we pointed out previously, Is a polynomial in P whose

entries along any row add up to p-i. Using this fact inx (p-i)
calculating f(i), one gets f(l) = A1(p-l) - t —
- ~~1(p-l)

2 
= A 1(~ -1)[1 - - _ _ _ _ _  = 0. The same is

true for g, the argument being analogous. Moreover,

h(1) g(1) - m(i)f(l) m’(l) 0 since both g(l) and

(by Lemma 4.3) t(1) are zero. All the remarks about h

hold true for Ic as welL This settles the statement about

the ranks of the C-matrices in the theorem. Having always

h(l) = 0 and k(l) = 0 means that the row sums In c(,)

and 0(p) are always zero. This implies that the two



24.

matrices are singular and hence, of’ rank at most t-1. We

know that t’ ~ is estimable if and only if t’ is in the

row span of C ( T ) .  But t’ is in the row span of’ C(i)

only if the sum of the entries In t is zero (i.e., only

if t~, is a linear contrast). The same holds true for the

residual effects. This completes the proof.

Let the four txt submatrices of C(T,p) (see Lemma

4.2), which we denote by A1~~ be such that

A11 A12
C(r,p) = .

A~2 A22

Then A~~ are polynomials in P. By evaluating A11 and

A22 at the tth roots of unity it can be readily seen that

their ranks are always t-l. By deleting the last row and

last column of these matrices we obtain two (t-l) x (t—i)

matrices which we denote by B11 and B22 . Then

0 B~~
A~1 = and A 2 =

0 0 0 0

are generalized inverses of A11 and A22 respectively.

The usual row operations in the normal equations lead us to

• the following result:

_ _ _ _ _ _ _ _ _ _  
_ _ _ _  _  

-
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Proposition 4.2. The best linear unbiased estimators in a

cyclic balanced RM(t,p,fl,A 1,A2) design for the estimable

linear contrasts t’i and t’p are respectively:

= t’c(iY[(41_x~1X2(x~X2Yx~)- ~~~~~~~~~~~~~~~~~~~~~~~~~~

t’ ~ = t’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

wliexe = incidenc e matrix between direct ef f e c t s  and

units in the ~th subarray .

= incidence matrix between residual effects

and units in the ~th subarray .

xl
A11 = PA 1I - E P1jP~~

3=1

1
A12 = - 

~2 I 
~ ~

A (p-i)
A22 = ~1(p—1) - 

1
t.p ~ 

~ ~ ~~
(11 ‘1 — A A A A ,
‘‘ I - 2%]22t221t12

C (p) — £22 - 42Aj1A12 
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(11 ~~~~ 1
+ pn /pxp 

- Pfl~Pxfl °px].

(x~x2Y = - 

~~~flxfl 0nxl

• L°1x~ 
0lxn 0lxl

X11 = columns in the 
design matrix corresponding

to the direct effects .

= columns in the design matrix corresponding

to the residual effects.

X2 = columns in the design matrix not in X11 or X12.

Y = vector of observations (ordered the same way as in

the design matrix).

Remark. When the design is connected c(iY and c(pY can

be computed the same way as A~1. Otherwise Lemma 4.3 can

be used.
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We have c(c)~ = TY and c(p) a = RY where T and R

have been explicitly given above. It can be shown, in a

straig)~tforward manner , that both T and R can be parti-

tioned into A 1p submatrices of size txt each and each

such submatrix is a polynomial in the matrix P, with zero

row sums . Let these partitions be T = [T1 ... T ] and

R = [R1 ... ~~ ~
]. 

A

Theorem 4.2. In a cyclic balanced and connected RM(t,p,n,A 1,X2)

design if the b.].u.e. of - T
~~ 
(respectively p0 - p1)

is known, then the b.l.u.e. of any linear contrast of direct

(respectively residual) effects can be derived from it.

Proof: Recall that for a given vector 4’ =

its shift starting at I is the vector (... 4t’4l’42 ,,,)‘
~~

denoted by 1(4’), in which is in the 1th position.

Indices are computed modulo t. Suppose L’C(T) = -

where 4’ 

~~~~~~~~~~~~~ 
Then the b.1.u.e. of

- ‘~~ . 
is (4’T1 ... 4’T~ )-Y. Because all the matrices

ip

involved are polynomials in P, 
~~~ 

- = i(c,’ )c(~).

Hence the b .l .u.e. of - is (i(4’)T1 ... i(4’)TA P )Y

for all 0 � ~ t-1. This can be formulated in terms of

the entries of the design as follows: The first row of’ treat-

ments in each subarray of size pxt should be always the

same, say O,l,...,t-1. Associate the weights (coefficients )

of’ the b.l.u.e. of - with the corresponding entries 

. -—
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(cells ) in this design. To compute the b .l.u.e. of

- leave the weights associated with the same cells ,

but do cyclic column rotations in each subarray until the

cells which were filled by 0 will be filled by i. The

weight associated with a certain cell will then become the

coefficient of the observation which falls in that cell after

these cyc lic rotations Of columns . An example will follow .

Any other linear contrast of direct effects can be expressed

as a linear combination of the t elementary cont rasts con-

sidered above. The b.1.u.e. of the linear contrast is

then the same linear combination of the b.1.u.e.’s of these

elementary contrasts. The same holds true for residual

effects.

Let’s illustrate by a small example what the previous

result says . Given the RM(3, 2 ,6,2 ,l)

0 1 2  0 1 2
1 2 0  2 0 ].

the b.l.u.e. for -

~~Yll + Y3.2 - 2Y13 - Y14 
- + 2Y16 -

- Y21 - Y22 + 2Y23 + Y24 + Y25 
- 2Y26) .

The b.l u.e. of ¶
2

T
0 

can be found by writing the design

as

2 C l  2 0 1
0 1 2  1 0 2  
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and using the same (unchanged ) weights as previously :

- 

~0 
= 3(~ 13 + Y11 

- 2Y12 
- Y16 

- Y14 + 2Y15 
-

- 

~23 
- 

~2l + 2122 + + 124 - 2125)

The b.l.u.e. of 2’t~ - - 
~ 2 

can be found by subtracting

the b.l.u.e. of T
2 

- from that of -
A list of partitions for values of t between 3 and

20 is attached . From each partition one can exhibit the

corresponding balanced connected designs as shown in the

proof’ of Proposition 3.2 and the two examples following it.

A comprehensive bibliography on Repeated Measurements Designs,

prior to 1975, can be found in A. Hedayat and K. Afsarinejad

( 1975).
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Appendix

Proof of Theorem 3.1.

We proceed In showing that the conditions stated In

Proposition 3.2 are satisfied for all the partitions listed

after the statement of Theorem 3.1. In all these cases it

is straightforward to check that

~ 1

U P~ = (L,2,3,...,t-1} (disjoint ) and that (P~J = p—i
1=].

for all l < i < A 1.

k
case 1. (p even) . To check the condition E s~~ ~ 0 ( mod t)
____  — 

4=3
for all 1 

~~ 
3 < Ic ~ (p-i), where P~ = ~~s~3)i1 ( j < (p-i)

ie the P~ defined above, we note that 
~~~ 

+ 
~i j4.1 = (t-l)

for all odd 1 
~~ 

3 
~~ 

(p-i) and all 1 < i < A 1. This fact

enables us to classify an arbitrary sum s~ , as above,
4=3 4

in one of the following four patterns :

(a) ((i+jA 1) + (t—l) - (i+3x 1)]+ .. .+ [(i+lcA 1) + (t-i)  — ( i.,-k~1)

for all 1 < 3 < Ic < . it’ for some 3 and Ic

this sum is equal to nzt ( f or some in c z)  we have

(k-j+l)(t-l) = mt. Or, (k-j+l) = (k-j+l-m)t. But

2 < (k-j+l) 
~ 
(P 1) 

< t, which leads to a contradiction.

_ _ _ _
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(b) (( i+3A 1) + ( t — l )  — (i+3x 1)]+ . . .÷ (( i+ ic i1) + ( t — l )  - (i+kA 1) ]

+ (i+(k+l)~~1) for all 1 < 3 < ic < ~~~~~ if for some

3 and Ic this sum is equal to nit , we get

(-k+j -l+i+(lc+ 1)x 1) (m-(Ic-j+ 1))t .  But 1 ( i+j =

-Ic + 3-i + i + ( Ic...i) < (-k+j-l+i+(k+l)x1) =

= (k+1)x 1 + ~. - - (k-fl < + x]~ = ~~~~~ ~~ 
(p—1 )A 1 =

(t-i) < t. This contradicts the fact that

(-k+j -l+i+(ic+l)x1 is a multiple of t .

(c)  ( t — i )  — (i+(j—1)A 1) + [( i÷j x 1) + ( t — i )  — (i+jx 1)) +

...+ [(i+1c11) + (t-i)  - ( i+kA 1)]  for all

0 
~~ ~~~~~ < k < 

kp~~
), This sum is a multiple of t only

if (i+(j— 1)A 1+k—j+2) is a multiple of t .  But

(i+(j-l)X1+k-j+2) is not a multiple of t since

2 < (i+(j-1)x1+k-j+2) < ~l 
+ ~~~~~~~ + 

(~~~~) + 2 <

_____ 
(p — i)  

< it—i )  ( t -i)  
—< 2 1 + 2 + 2 ~~ S

( d )  ( t— l )  — (i+(j—i)~ 1) + [i+j~~1+ (t-1)— (i+jx
1

) ] +

...+ [(i+ic) 1+(t-i)-(i+lcX1)] + i + (ic-~-1)~ 1 for all

0 < (i-i) < (k+i) < ~ 2), Proceeding as previous ly ,

this sum is a multiple of t for some 3 and Ic, only

if ( Ic —j + 2) ( x 1—l )  is a multiple of’ t. But

2 � (ic-j÷2)(i1-l) < ( ic+ l)A~ < 
(p-l)~ (t-l) 

< ~~

We showed that , for 1 ( i < )~~, the conditions on Pr ’s

required in Proposition 3.2 are satisfied . Since 1. < A 1 has
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not been used in any of the previous inequalities, the previous

four patterns apply also to with the last entry removed.
1

So we only have to consider the cases that Involve the last H

entry of P
~ 

: i.e., t—1 .

(a 1) 4( t-l) + ( t- i) ,  f or 0 < 4 < (p~2), where 4 is the H

number of successive pairs of entries in P that add
A 1

up to ( t — l ) .  Clearly 4 ( t - l)  + (t-i) is a multiple

of t only if (4+1) is a multiple of t .  But

< £.+1 < ~p-2) 
< t~

(b1) (t—i) — + 4(t-1) + ( t— l ) ,  for 0 < ~ 
(p-k) and

( j -s-4) = ~~~~~~~~~~~~~~~ Here 4 has the same meaning as before .

This sum is a multiple of t only if (4+2+j A 1) is also

a multiple of t. Since 2 
~ 

( C,+2+j x 1) < (~.+2 ) +

+ ( (P 2) - + ~~~~~~ <~~ + 
(p 1)x ~ 

(p+t-i)

2t-1 < t, the proof for p even is completed .

case 2.1. (p odd and > 2). The same four patterns

arise here as in the case of p even and they are ruled out

the same way . Therefore , we only hav e to consider the sums

that involve the last ent ry of
1

In what follows, let 4 be the number of successive pairs

of entries in P that add up to (t-i).
A
1

- -

~

- - - --

~

• —- —-~~• —- . - --~~~~~ --- 
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(a2) 4(t—1) + ~~~~~~ + (t-i); for all o < <

Clearly, 4 ( t — i )  + ~~~~~~~~~~~~~~~~~~~~ + ( t— i )  = mt (for some m € z)

only if (
~~ + 

(p~ l)~ 1 - i) = (m-4-l)t. But

0 < ~~
— 1

~ (~~~~i) � (— 4  + 
(p_ l) A -1) < 

Cp_ 1) , = 
(t—i) 

<

(b2) (t-i) — + 4 ( t— 1)  + 
(
~P~
1)A 1 + ( t — i ) ;  for all

0 < 
~
. � ~~~~ and 3 = ~~~~~ - 4. If this sum is nit

( for some in € z ),  then ((~~~1) — — ~~2 = (m-4—2)t.
Since -t < -

~ < ((~P~~~~ - - - 2 < 
(p-1)~ = 

(t-l)

< t , we can only have ~~~ - = 4 - 2. Substitut-

ing for j = _____  — 4, we get )~] = ~~~~~. But is

a positive integer if and only if 4 = 0, in which case

Xi = 2.

case 2.2. (p odd and = 2). P1 is defined the same way

as in the previous case, so we should only examine the partial

sums in P2 . But the partial sums in with the first ent ry

removed are satisfactory by case 1. Cases involving the first

entry in P2 should only be considered. There are two possi-

bilities : (a3) (t—l) + e (t—i) and (b3) (t—l) + 4(t—1) + 23,

where 0 <. 4 ( 
(P~3) and (in (b3

)) 3 P. + 1. In both these

cases the remainder modulo t is 4 + 1 and 1 p~ + 1 (

< t. This concludes the construction of the designs and the

proof of the theorem . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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t arbitrary, p=2 : 1(1)1(2)1(3)1 I(t—l)I

t=5, p=3: 1(1,3)1(4,2)1

t=7, p=3 : 1( 1,5)1(2,4)1(3,6)1

t=7, p =k: 1(1,5,3)1(2,4,6)1

t=9, p=3: 1(1,7)1(2,6)1(3,5)1(4,8)1

t=9, p=5: I(l,7;3,5)I(8,2,6,k)I

t=lO, p=4: 1(1,8,4)1(2,7,5)1(3,6,9)1

t=ll, p=3: 1(1,9)1(2,8)1(3,7)1(4,6)1(5,10)1
t=ll, p=6: 1(1,9,3,7,5)1(2,8,4,6,10)1

t=13, p=3: 1(1,11)1(2,10)1(3,9)1(4,8)1 (5,7)1 (6,12)1

t=13, p=4: 1(l,ll,5)I(2,l0,6)I(3,9,7)I(k,8,12)I

t=l3, p=7: 1(1,11,3,9,5,7)1(12,2,10,4,8,6)1

t=15, p~3: 1(1,l3)1(2,l2)I(3,11)l(4,lo)I (5,9)16,8)I(7,lk)I

t=15, p=8: I(l,13,3,ll,5,9,7)I(2,l2,k,lO,6,8,lk)l

t=l6, p=4: l (1,14,6)l(2,13,7)l(3,12,8)I(k,l1,9)l(5,lO,15)l

t=l6, p=6: J(1,lk,i1,ll,7)I(2,13,5,lo,8)I(3,l2,6,9,15)j

t=l7, p=3: l(i,15)l(2,lk)I(3,13)l(4,12)l(5,11)l(6,lO)I(7,9)l(8,16)l

t=17, p=5: ((1,15,5,ll)I(2,1k,6,10)I(3,13,7,9)l(4,l2,8,l6)l

t=l7, p=9: l (l,l5,3,l3,5,ll,7,9)l(l6,2,lk,k,12,6,lO,8)I

t=19, p=3: I(l,l7)I(2,16)I(3,15)I(k,lk)I(5,13)l (6,l2)l(7,ll)I
1(8,10)1(9,18)1

t=l9, p=k : l (l,17,7)I(2,16,8)I(3,15,9)l(4,14,10)l(5,3,ll)I(6,l2,l8)I

t=19, p=7: l(l,17,4,1k,7,ll)1(2,l6,5,13,8,lO)l(3,15,6,12 ,9,18)l

t=]9, p=lO: I(l,l7,3,l5,5,13,7,ll,9)1(2,16,k,14,6,i2,8,lO,l8)I
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